Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Opt Lett ; 48(21): 5479-5482, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37910682

We report on the experimental development of short-tapered chalcogenide-glass rods for mid-infrared supercontinuum generation. Multi-octave spectral broadening of femtosecond laser pulses is demonstrated from 1.6 to 15.6 µm in a 5-cm-long tapered Ge20Se70Te10 rod with a waist diameter of 25 µm. Despite the multimode nature of the optical waveguide used, this work clearly shows the potential of such simple post-processed rods for advancing fiber SC sources with infrared glasses, thereby unlocking new possibilities in terms of coupling efficiency, spectral coverage, and output power.

2.
Nat Commun ; 14(1): 6561, 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37848490

Adaptative objects based on shape-memory materials are expected to significantly impact numerous technological sectors including optics and photonics. In this work, we demonstrate the manufacturing of shape-memory optical fibers from the thermal stretching of additively manufactured preforms. First, we show how standard commercially-available thermoplastics can be used to produce long continuously-structured microfilaments with shape-memory abilities. Shape recovery as well as programmability performances of such elongated objects are assessed. Next, we open the way for light-guiding multicomponent fiber architectures that are able to switch from temporary configurations back to user-defined programmed shapes. In particular, we show that distinct designs of fabricated optical fibers can maintain efficient light transmission upon completion of multiple temperature-triggered bending/straightening cycles. Such fibers are also programmed into more complex shapes including coils or near 180 ° curvatures for delivering laser light around obstacles. Finally, a shape-memory exposed-core fiber is employed in fiber evanescent wave spectroscopy experiments to optimize the performance of the sensing scheme. We strongly expect that such actuatable fibers with light-guiding abilities will trigger exciting progress of unprecedented smart devices in the areas of photonics, electronics, or robotics.

3.
Sci Rep ; 13(1): 5092, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36991075

Among the different fundamental aspects that govern the design and development of elongated multimaterial structures via the preform-to-fiber technique, material association methodologies hold a crucial role. They greatly impact the number, complexity and possible combinations of functions that can be integrated within single fibers, thus defining their applicability. In this work, a co-drawing strategy to produce monofilament microfibers from unique glass-polymer associations is investigated. In particular, the molten core-method (MCM) is applied to several amorphous and semi-crystalline thermoplastics for their integration within larger glass architectures. General conditions in which the MCM can be employed are established. It is demonstrated that the classical glass transition temperature compatibility requirements for glass-polymer associations can be overcome, and that other glass compositions than chalcogenides can be thermally stretched with thermoplastics, here oxide glasses are considered. Composite fibers with various geometries and compositional profiles are then presented to illustrate the versatility of the proposed methodology. Finally, investigations are focused on fibers produced from the association of poly ether ether ketone (PEEK) with tellurite and phosphate glasses. It is demonstrated that upon appropriate elongation conditions, the crystallization kinetics of PEEK can be controlled during the thermal stretching and crystallinities of the polymer as low as 9 mass. % are reached in the final fiber. It is believed such novel material associations as well as the ability to tailor material properties within fibers could inspire the development of a new class of hybrid elongated objects with unprecedented functionalities.

4.
Materials (Basel) ; 15(3)2022 Feb 03.
Article En | MEDLINE | ID: mdl-35161120

Glasses in the TeO2-ZnO-Y2O3 (TZY) ternary system are examined in the present work. The vitrification domain of the chosen oxide matrix is determined and differential scanning calorimetry as well as X-ray diffraction measurements are carried out. The material characterizations reveal that Y2O3 incorporation cannot exceed 5 mol.% without causing detrimental crystallization within the glass. Optical transmission and refractive index investigations are conducted on compositions yielding fully amorphous samples. Next, the fiber drawing ability of selected yttrium-containing zinc-tellurite glasses is assessed and fiber-attenuation measurements in the mid-infrared are presented. Finally, a multimode step-index fiber is fabricated by combining a TZY cladding glass with a La2O3-based tellurite core glass. It is believed that yttrium-containing glasses could prove useful in association with other high glass transition temperature (>300 °C) TeO2-based materials for the design of robust optical fibers with precisely engineered refractive index profiles.

5.
Opt Lett ; 42(2): 247-250, 2017 Jan 15.
Article En | MEDLINE | ID: mdl-28081084

We report numerical and experimental demonstrations of flexible group-velocity dispersion regimes in step-index tellurite fibers by fine control of the fiber core diameter. Our simple fiber design allowed us to explore various nonlinear propagation regimes beyond 2 µm, which involved careful control of four-wave mixing processes. Combined with the recent development of 2 µm fiber lasers, we present an easy way to tailor supercontinuum generation and related coherence features in the high-demand 1.5-3.5 µm spectral region.

6.
Opt Express ; 18(9): 9107-12, 2010 Apr 26.
Article En | MEDLINE | ID: mdl-20588758

We report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes. Fiber losses, which are the lowest recorded so far for selenium based MOFs, are equal to the material losses, meaning that the process has no effect on the glass quality.

7.
Appl Opt ; 48(19): 3860-5, 2009 Jul 01.
Article En | MEDLINE | ID: mdl-19571947

We present the first fabrication, to the best of our knowledge, of chalcogenide microstructured optical fibers in Te-As-Se glass, their optical characterization, and numerical simulations in the middle infrared. In a first fiber, numerical simulations exhibit a single-mode behavior at 3.39 and 9.3 microm, in good agreement with experimental near-field captures at 9.3 microm. The second fiber is not monomode between 3.39 and 9.3 microm, but the fundamental losses are 9 dB/m at 3.39 microm and 6 dB/m at 9.3 microm. The experimental mode field diameters are compared to the theoretical ones with a good accordance.

8.
Opt Express ; 17(8): 6224-9, 2009 Apr 13.
Article En | MEDLINE | ID: mdl-19365446

We propose a new way to realize a microfiber optical resonator by implementing the topology of a reef knot using two microfibers. We describe how this structure, which includes 4 ports and can serve as an add-drop filter, can be fabricated. Resonances in an all-silica reef knot are measured and good fits are obtained from a simple resonator model. We also show the feasibility of assembling a hybrid silica-chalcogenide reef knot structure.


Chalcogens/chemistry , Fiber Optic Technology/instrumentation , Optical Tweezers , Oscillometry/instrumentation , Silicon Dioxide/chemistry , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Miniaturization , Reproducibility of Results , Sensitivity and Specificity
9.
Appl Opt ; 47(32): 6014-21, 2008 Nov 10.
Article En | MEDLINE | ID: mdl-19002225

We report several small-core chalcogenide microstructured fibers fabricated by the "Stack & Draw" technique from Ge(15)Sb(20)S(65) glass with regular profiles. Mode field diameters and losses have been measured at 1.55 microm. For one of the presented fibers, the pitch is 2.5 microm, three times smaller than that already obtained in our previous work, and the corresponding mode field diameter is now as small as 3.5 microm. This fiber, obtained using a two step "Stack & Draw" technique, is single-mode at 1.55 microm from a practical point of view. We also report the first measurement of the attenuation between 1 and 3.5 microm of a chalcogenide microstructured fiber. Experimental data concerning fiber attenuation and mode field diameter are compared with calculations. Finally, the origin of fiber attenuation and the nonlinearity of the fibers are discussed.

10.
Opt Express ; 14(3): 1280-5, 2006 Feb 06.
Article En | MEDLINE | ID: mdl-19503451

We report recent progress on fabrication of solid core microstructured fibers in chalcogenide glass. Several complex and regular holey fibers from Ga5Ge20Sb10S65 chalcogenide glass have been realized. We demonstrate that the "Stack & Draw" procedure is a powerful tool against crystallisation when used with a very stable chalcogenide glass. For a 3 ring multimode Holey Fiber, we measure the mode field diameter of the fundamental mode and compare it successfully with calculations using the multipole method. We also investigate, via numerical simulations, the behaviour of fundamental mode guiding losses of microstructured fibers as a function of the matrix refractive index, and quantify the advantage obtained by using a high refractive index glass such as chalcogenide instead of low index glass.

11.
Opt Express ; 14(4): 1524-32, 2006 Feb 20.
Article En | MEDLINE | ID: mdl-19503478

High second-order susceptibility has been created in a chalcogenide glass from Ge-Sb-S system. A thermal poling process was used to produce this non-linear effect and a second harmonic generation experiment allowed characterizing the phenomenon. A maximum chi(2) value of 8.0+/-0.5 pm/V was measured for the first time to our best knowledge in sulfide glasses.

12.
J Phys Chem B ; 109(13): 6130-5, 2005 Apr 07.
Article En | MEDLINE | ID: mdl-16851676

Some resolved solid state (77)Se NMR spectra are presented in the Te(x)Se(1-x) vitreous system at ambient temperature. They exhibit three different kinds of Se lines assigned to the following Se atom neighborhoods: Se-Se-Se, Se-Se-Te, and Te-Se-Te. Different models were considered to describe the way the Se and Te atoms are linked into the chains: clustering process, homogeneous distribution, random distribution. Finally, thanks to the measurements of the relative intensities of the lines, it appears that Se and Te atoms are mainly randomly distributed with a small preference for heteropolar bonds. The (125)Te spectra are also shown but their resolution is too weak to be informative concerning the vitreous network.

...